Timer
Timer在JDK5.0之前是唯一的内置任务调度方法。其惯常的使用方式是
final Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
// do sth
}, 10*1000, 10*1000);
我们来看一下Timer的源码是怎样的。按照其使用方式,可以猜到:
- Timer内部包含一个任务队列
- 任务队列的元素应该是TimerTask
首先看一下TimerTask
TimerTask
public abstract class TimerTask implements Runnable {
/**
* This object is used to control access to the TimerTask internals.
*/
final Object lock = new Object();
/**
* The state of this task, chosen from the constants below.
*/
int state = VIRGIN;
/**
* Next execution time for this task in the format returned by
* System.currentTimeMillis, assuming this task is scheduled for execution.
* For repeating tasks, this field is updated prior to each task execution.
*/
long nextExecutionTime;
/**
* Period in milliseconds for repeating tasks. A positive value indicates
* fixed-rate execution. A negative value indicates fixed-delay execution.
* A value of 0 indicates a non-repeating task.
*/
long period = 0;
从源代码中可以看到TimerTask只是在Runnable上只是做了一个非常简单的扩展,增加了4个属性字段,分别记录一些属性值。
在Timer中有多个不同的构造方法,最终多个不同的构造方法会最终都是重载使用了下面这个方法
private void sched(TimerTask task, long time, long period) {
if (time < 0)
throw new IllegalArgumentException("Illegal execution time.");
// Constrain value of period sufficiently to prevent numeric
// overflow while still being effectively infinitely large.
if (Math.abs(period) > (Long.MAX_VALUE >> 1))
period >>= 1;
synchronized(queue) {
if (!thread.newTasksMayBeScheduled)
throw new IllegalStateException("Timer already cancelled.");
synchronized(task.lock) {
if (task.state != TimerTask.VIRGIN)
throw new IllegalStateException(
"Task already scheduled or cancelled");
task.nextExecutionTime = time;
task.period = period;
task.state = TimerTask.SCHEDULED;
}
queue.add(task);
if (queue.getMin() == task)
queue.notify();
}
}
继续看源码,添加任务时,可以看到任务最终被插入到一个队列中了。而在在Timer代码的一开头,我们就看到这里确实有一个队列
public class Timer {
/**
* The timer task queue. This data structure is shared with the timer
* thread. The timer produces tasks, via its various schedule calls,
* and the timer thread consumes, executing timer tasks as appropriate,
* and removing them from the queue when they're obsolete.
*/
private final TaskQueue queue = new TaskQueue();
/**
* The timer thread.
*/
private final TimerThread thread = new TimerThread(queue);
TaskQueue内部存储着所有待执行的TimerTask,而TimerThread则是所有TimerTask的执行线程。
TaskQueue
TaskQueue内部包含一个128位的TimerTask数组,所有的TimerTask在数组内以小顶堆的方式进行存储。
class TaskQueue {
/**
* Priority queue represented as a balanced binary heap: the two children
* of queue[n] are queue[2*n] and queue[2*n+1]. The priority queue is
* ordered on the nextExecutionTime field: The TimerTask with the lowest
* nextExecutionTime is in queue[1] (assuming the queue is nonempty). For
* each node n in the heap, and each descendant of n, d,
* n.nextExecutionTime <= d.nextExecutionTime.
*/
private TimerTask[] queue = new TimerTask[128];
上面的代码里,堆首的位置是1,而不是0;位置是1的时候,堆中parent和两个child的位置运行关系恰好是[n]->[2n],[2n+1],非常便于理解和运算。如果使用0位置作为堆首,那么运算关系则需要变成:[n]->[2n+1],[2n+2],这个运算关系看起来比较奇怪。
private void fixUp(int k) {
while (k > 1) {
int j = k >> 1;
if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
break;
TimerTask tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
k = j;
}
}
private void fixDown(int k) {
int j;
while ((j = k << 1) <= size && j > 0) {
if (j < size &&
queue[j].nextExecutionTime > queue[j+1].nextExecutionTime)
j++; // j indexes smallest kid
if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime)
break;
TimerTask tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
k = j;
}
}
void heapify() {
for (int i = size/2; i >= 1; i--)
fixDown(i);
}
很标准的堆操作
TimerThread
TimerThread extend thread,它是Timer中所有任务实际的执行线程,thread的run方法中只有一个mainloop方法,其中执行了一个无限循环。循环中,从队列中拿到最近需要执行的一个任务,
public void run() {
try {
mainLoop();
} finally {
// Someone killed this Thread, behave as if Timer cancelled
synchronized(queue) {
newTasksMayBeScheduled = false;
queue.clear(); // Eliminate obsolete references
}
}
}
private void mainLoop() {
while (true) {
try {
TimerTask task;
boolean taskFired;
synchronized(queue) {
// Wait for queue to become non-empty
while (queue.isEmpty() && newTasksMayBeScheduled)
queue.wait();
if (queue.isEmpty())
break; // Queue is empty and will forever remain; die
// Queue nonempty; look at first evt and do the right thing
long currentTime, executionTime;
task = queue.getMin();
synchronized(task.lock) {
if (task.state == TimerTask.CANCELLED) {
queue.removeMin();
continue; // No action required, poll queue again
}
currentTime = System.currentTimeMillis();
executionTime = task.nextExecutionTime;
if (taskFired = (executionTime<=currentTime)) {
if (task.period == 0) { // Non-repeating, remove
queue.removeMin();
task.state = TimerTask.EXECUTED;
} else { // Repeating task, reschedule
queue.rescheduleMin(
task.period<0 ? currentTime - task.period
: executionTime + task.period);
}
}
}
if (!taskFired) // Task hasn't yet fired; wait
queue.wait(executionTime - currentTime);
}
if (taskFired) // Task fired; run it, holding no locks
task.run();
} catch(InterruptedException e) {
}
}
}
当queue里面为空时,则wait等待(当向queue中add时,此处的wait则会被唤醒),唤醒之后则获取queue[1]位置的task,确定该Task是否到了执行时间,如果到了执行时间,则开始执行。
上面的代码里面可以关注到几个细节:
- Timer的任务的并不能保证严格准时的任务执行,它的执行时机是这一次CPU调度到这个线程时,有一个任务的执行时间刚好到了或者已经过了
- 所有的Task都是在这一个线程内执行的,只有执行完一个Task的run方法,才回去取下一个任务执行。因此加入Timer内加入的Task执行时间过长,超过了下一个任务的开始时间,那么下一个任务的执行将会延迟。
- 在mainloop中如果发生的是中断异常,单次任务会停止;如果发生的是任何其他异常,整个mainloop将完全停止,队列清空后线程停止
上面的几点也刚好是Timer本身的主要缺陷。所以后续Java推出了java.util.concurrent.ScheduledExecutorService弥补了这些缺陷。